Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Cell Biol ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38614918

RESUMEN

H3.3 is a highly conserved nonreplicative histone variant. H3.3 is enriched in promoters and enhancers of active genes, but it is also found within suppressed heterochromatin, mostly around telomeres. Accordingly, H3.3 is associated with seemingly contradicting functions: It is involved in development, differentiation, reprogramming, and cell fate, as well as in heterochromatin formation and maintenance, and the silencing of developmental genes. The emerging view is that different cellular contexts and histone modifications can promote opposing functions for H3.3. Here, we aim to provide an update with a focus on H3.3 functions in early mammalian development, considering the context of embryonic stem cell maintenance and differentiation, to finally conclude with emerging roles in cancer development and cell fate transition and maintenance.

2.
Cell Genom ; 4(5): 100541, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38663408

RESUMEN

To better understand inter-individual variation in sensitivity of DNA methylation (DNAm) to immune activity, we characterized effects of inflammatory stimuli on primary monocyte DNAm (n = 190). We find that monocyte DNAm is site-dependently sensitive to lipopolysaccharide (LPS), with LPS-induced demethylation occurring following hydroxymethylation. We identify 7,359 high-confidence immune-modulated CpGs (imCpGs) that differ in genomic localization and transcription factor usage according to whether they represent a gain or loss in DNAm. Demethylated imCpGs are profoundly enriched for enhancers and colocalize to genes enriched for disease associations, especially cancer. DNAm is age associated, and we find that 24-h LPS exposure triggers approximately 6 months of gain in epigenetic age, directly linking epigenetic aging with innate immune activity. By integrating LPS-induced changes in DNAm with genetic variation, we identify 234 imCpGs under local genetic control. Exploring shared causal loci between LPS-induced DNAm responses and human disease traits highlights examples of disease-associated loci that modulate imCpG formation.


Asunto(s)
Islas de CpG , Metilación de ADN , Epigénesis Genética , Monocitos , Adulto , Femenino , Humanos , Masculino , Islas de CpG/genética , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Lipopolisacáridos/farmacología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/inmunología , Persona de Mediana Edad , Anciano
3.
Nucleic Acids Res ; 51(4): 1662-1673, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36156096

RESUMEN

The histone H3 variant, H3.3, is localized at specific regions in the genome, especially promoters and active enhancers, and has been shown to play important roles in development. A lysine to methionine substitution in position 27 (H3.3K27M) is a main cause of Diffuse Intrinsic Pontine Glioma (specifically Diffuse Midline Glioma, K27M-mutant), a lethal type of pediatric cancer. H3.3K27M has a dominant-negative effect by inhibiting the Polycomb Repressor Complex 2 (PRC2) activity. Here, we studied the immediate, genome-wide, consequences of the H3.3K27M mutation independent of PRC2 activity. We developed Doxycycline (Dox)-inducible mouse embryonic stem cells (ESCs) carrying a single extra copy of WT-H3.3, H3.3K27M and H3.3K27L, all fused to HA. We performed RNA-Seq and ChIP-Seq at different times following Dox induction in undifferentiated and differentiated ESCs. We find increased binding of H3.3 around transcription start sites in cells expressing both H3.3K27M and H3.3K27L compared with WT, but not in cells treated with PRC2 inhibitors. Differentiated cells carrying either H3.3K27M or H3.3K27L retain expression of ESC-active genes, in expense of expression of genes related to neuronal differentiation. Taken together, our data suggest that a modifiable H3.3K27 is required for proper histone incorporation and cellular maturation, independent of PRC2 activity.


Asunto(s)
Células Madre Embrionarias , Histonas , Animales , Ratones , Diferenciación Celular , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Glioma/genética , Histonas/metabolismo , Mutación , Proteínas del Grupo Polycomb/metabolismo , Doxiciclina/farmacología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo
4.
NAR Genom Bioinform ; 1(1): e3, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33575550

RESUMEN

The human genome contains dozens of genes that encode for proteins containing long poly-glutamine repeats (polyQ, usually encoded by CAG codons) of 10Qs or more. However, only nine of these genes have been reported to expand beyond the healthy variation and cause diseases. To address whether these nine disease-associated genes are unique in any way, we compared genetic and epigenetic features relative to other types of genes, especially repeat containing genes that do not cause diseases. Our analyses show that in pluripotent cells, the nine polyQ disease-related genes are characterized by an open chromatin profile, enriched for active chromatin marks and depleted for suppressive chromatin marks. By contrast, genes that encode for polyQ-containing proteins that are not associated with diseases, and other repeat containing genes, possess a suppressive chromatin environment. We propose that the active epigenetic landscape support decreased genomic stability and higher susceptibility for expansion mutations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...